Design of Positioning Hydraulic Systems

Victor Juliano De Negri

Federal University of Santa Catarina
Mechanical Engineering Department
LASHIP – Laboratory of Hydraulic and Pneumatic Systems
Introduction

- Electro-hydraulic positioning systems:
 - Applied in several fields:
 - Agricultural machinery
 - Aerospace
 - Turbine speed governors
 - Injection machines
Introduction

- Design and assembly are not simple tasks:
 - The behavior needs to be analyzed according to control theory
 - Static and dynamic requirements must be fulfilled under loads not well known by the designer

- Consequences:
 - Increased development cost and time
 - Reuse of previous designs for new equipment development
The Design Method

To overcome these constraints:
- A comprehensive view of the design process is necessary

- Procedures are required for hydraulic component sizing, considering the global system behavior (closed loop)

Controller gains:
$K_p = 2; K_i = 0,1$

Position sensor:
$K_s = 300 \text{ V/m}$

Cylinder: $d = 30 \text{ mm}$

Valve: $q_{Vn} = 32 \text{ L/min}$ ($\Delta p = 10 \text{ bar}$)
The design methodology of **mechatronic systems** can be structured into four main phases:

- Clarification of the task
- Conceptual design
- Embodiment design
- Detail design

Pahl & Beitz Methodology

- Technical systems
The design methodology of mechatronic systems can be structured into four main phases:

- Clarification of the task
- Conceptual design
- Embodiment design
- Detail design
The Design Method

- Types of hydraulic circuit handled by the method:
 - (a) Symmetric proportional four-way valve and symmetric double-effect cylinder
 - (b) Asymmetric proportional four-way valve and asymmetric double-effect cylinder
 - (c) Proportional three-way valve and asymmetric single effect cylinder
Dynamic and static requirements:

- Considering a Positioning System:
 - Maximum displacement
 - Settling time
 - Forces
 - Overshoot

- Uses the mathematical expressions derived from the dynamic model of the system

- The results are the specifications for the valve and the cylinder
Step 1 - Static and Dynamic Sizing

1. \(\omega_{n}^{sys} \)
 System Natural Frequency

2. \(v_{c}^{c}; a_{c}^{c} \)
 Cylinder Speed and Acceleration

3. \(p_{c} \)
 Load Pressure

4. \(A_{c}^{c} \)
 Cylinder Area

5. \(q_{VC_{max}} \)
 Cylinder Maximum Flow Rate

6. \(\omega_{n}^{c} \)
 Cylinder Natural Frequency

7. \(\omega_{n}^{v} \)
 Valve Natural Frequency

8. \(t_{s}^{v} = 4\tau \)
 Valve Settling Time

START

END
Step 1 - Static and Dynamic Sizing

- **Task 1** – Calculate the system natural frequency

 \[\zeta = 0.7 \]

 \[\omega_n^{SYS} = \frac{5.7}{t_s^{SYS}} \]

 \[\omega_n^{SYS} = \frac{6}{t_s^{SYS}} \]

 - Overshoot?
 - Yes
 - No

 \[\zeta = 1 \]

 Global system behavior

 Time response of 2nd order under damped systems

 \[\tau = \frac{1}{\zeta \cdot \omega_n} \]

 Time response of 2nd order critically damped systems
Step 1 - Static and Dynamic Sizing

- Task 2 – Calculate the maximum cylinder speed and acceleration

\[\zeta_{SYS}, \omega_n^{SYS}, x^C_{max} \]

MAXIMUM SPEED

- \[v_{max}^C = 0.46 \cdot x_{max}^C \cdot \omega_n^{SYS} \]
- \[v_{max}^C = 0.37 \cdot x_{max}^C \cdot \omega_n^{SYS} \]

MAXIMUM ACCELERATION

- \[a_{max}^C = x_{max}^C \cdot \omega_n^{SYS} \]
- \[a_{max}^C = x_{max}^C \cdot \omega_n^{SYS} \]
Step 1 - Static and Dynamic Sizing

- Task 3 - Estimate the load pressure
- Task 4 - Calculate the cylinder area

\[p_C = p_A - p_B \]

\[p_{CP_{\text{max}}} = \frac{2}{3} \cdot p_s \]

Maximum Load Pressure: \(p_{C_{\text{max}}} \)

- At \(x_{C_{\text{max}}} \)
 \[A^C \cdot p_C = K \cdot x_{C_{\text{max}}} + F_U \]

- At \(v_{C_{\text{max}}} \)
 \[A^C \cdot p_C = B^i \cdot v_{C_{\text{max}}} + F_U \]

- At \(a_{C_{\text{max}}} \)
 \[A^C \cdot p_C = M_t \cdot a_{C_{\text{max}}} + F_U \]

Cylinder Area (With \(p_{C_{\text{max}}} = p_{C_{\text{pmax}}} \))

- \(A^C \) Defined!

Valve + Cylinder \(\rightarrow \) Define Maximum Power

\(\text{Displacement (x 100\%)} \)

\[\zeta = 0.7 \]
\[\zeta = 1 \]

Time (s)

0.01 0.02 0.03 0.04 0.05
Step 1 - Static and Dynamic Sizing

- Task 5 – Determine the cylinder maximum flow rate:

\[q_{VC\ max} = A^C \cdot v_{max}^C \]

- Task 6 – Determine the cylinder natural frequency

\[\omega_{n\ min}^C = \left(\frac{4 \cdot \beta e \cdot A^{C^2}}{M_t \cdot V_t^C} \right) \]
Step 1 - Static and Dynamic Sizing

- Task 7 – Calculate the valve natural frequency

 \[\omega_C \geq 5 \omega_{SYS} \]

 - If Yes:
 \[\omega^V \geq 5 \omega_{SYS} \]
 \[\omega^V \geq 5 \omega^C \]
 - If No:
 \[\omega_{SYS} = \frac{5.7}{t_s} \]

- Task 8 – Calculate the valve settling time

 \[t_s = \frac{5.7}{\omega_n} \]
Step 2
Conversion of Cataloged Data

1. Δp_t
 Pressure drop at valve at maximum flow rate

2. K_v
 Flow rate coefficient

3. $K_{v_{cat}}$
 Catalog flow rate coefficient

4. $q_{VC_{max}}$
 Maximum flow rate at the valve

END
Step 2
Conversion of Cataloged Data

- Task 1 – Calculate the pressure drop at valve at maximum flow rate

\[\Delta p_t = p_S - p_{C \text{ max}} \]

- Task 2 – Calculate the flow rate coefficient

\[K_v = \frac{q_{VC \text{ max}}}{\sqrt{\Delta p_t}} \]
Step 2
Conversion of Cataloged Data

- **Task 3** – Calculate catalog flow rate coefficient
 - For total pressure drop
 \[
 K_v^{cat} = \frac{q_{v_n}}{\sqrt{\Delta p_{tn}}}
 \]
 - For partial pressure drop
 \[
 K_v^{cat} = \frac{q_{v_n}}{\sqrt{2\Delta p_{pn}}}
 \]
 - The valve must have a Flow Rate Coefficient similar to or greater than the specified value:
 \[
 0.5K_v < K_v^{cat} < 2K_v
 \]
Step 2
Conversion of Cataloged Data

- Task 4 – Maximum flow rate at the valve

\[q_{VC_{\text{max}}} = K_{v_{cat}} \cdot \sqrt{\Delta p_t} \]

- Power limits of the valve:

- Dynamic response:

Step 1 – Tasks 7, 8

\[t_s^V = \frac{5.7}{\omega_n^V} \]
Step 3
Dynamic Behavior Study

- Simulation is recommended to validate the design obtained
- A reliable model must be available
- Simulation avoids the construction of a system with unexpected behavior
Method evaluation

- LabVIEW program created to implement the method

- Matlab/Simulink model created to validate the method

- Tests carried out on Proportional Hydraulics Platform
 - Positioning hydraulic system controlled by PC with VXI data acquisition system
Method evaluation

- The Valve+Cylinder Specifications came from the Design Method

- Step Response:
 - Comparison of simulation and experimental results
 - The model gives confidence for purely theoretical analysis

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_s^{SYS} [ms]</td>
<td>450</td>
</tr>
<tr>
<td>x^C_{max} [mm]</td>
<td>80</td>
</tr>
<tr>
<td>Overshoot?</td>
<td>No</td>
</tr>
<tr>
<td>ω_n^{SYS} [rad/s]</td>
<td>12.69</td>
</tr>
<tr>
<td>p_s [Pa]</td>
<td>4.50e6</td>
</tr>
<tr>
<td>A^C [cm^2]</td>
<td>2.36</td>
</tr>
<tr>
<td>F_u [N]</td>
<td>708</td>
</tr>
<tr>
<td>B [N·s/m]</td>
<td>340</td>
</tr>
<tr>
<td>M_i [kg]</td>
<td>5.50</td>
</tr>
</tbody>
</table>
Method evaluation

- System was tested under different loads
 - Faster and with overshoot when tested under a smaller load
 - Was not able to meet the settling time specification with higher loads
Method evaluation

- Performance of the system for different valves
 - Proportional gain was reduced to the minimal value
 - With $K_v = 2$ K_v calculated, the system met all specifications
 - With $K_v = 3$ K_v calculated:
 - The system has considerable overshoot and faster response than required
 - Reduced gains make the system slow close to the set point and increase the influence of the valve dead band and cylinder friction
Method evaluation

- **Kv > 2 Kv calculated:**
 - smaller proportional gains and no valve saturation.
 - Larger valves do not show performance improvements and are, in practice, more slow and expensive.

- **Kv < 0.5 Kv calculated:**
 - high controller proportional gains, great periods of valve saturation and tendency for oscillating movement.
Conclusions

- A design method for positioning hydraulic systems was presented.

- Case results and practical applications have demonstrated that the method is a useful tool for hydraulic positioning system design.

- The method allows a comprehensive view of the valve and cylinder requirements in the closed loop system.

- The flow rate coefficient helps the designer to select the valve from several options.
Workshop on Innovative Engineering for Fluid Power and Vehicular Systems

Federal University of Santa Catarina
Mechanical Engineering Department
Laboratory of Hydraulic and Pneumatic Systems

Victor Juliano De Negri – UFSC - victor@emc.ufsc.br
Fernando Furst - VSB - fernando.furst@vstubos.com
José Roberto B. Ramos Filho – UFOPA - robertobrancofilho@gmail.com
Alisson Dalssasso C. de Souza – IFRS - alissondcs@gmail.com
Irving Muraro – MPF - irving@pgr.mpf.gov.br

www.laship.ufsc.br